P7.4-4) A 7-kg mass slides down an inclined surface ($\theta = 40^{\circ}$) until it hits and compresses a spring. The spring is a hard spring with a spring force that is defined by the equation $F_s = kx^2$, where k = 1000 N/m². The mass is released from rest at position l and slides down the inclined surface d = 2 m before it encounters the spring. If the coefficient of kinetic friction between the mass and inclined surface is 0.62, determine the maximum compression of the spring Δx .

<u>Given:</u>

Find:

Solution:

Derive the work done by the non-conservative forces in variable form. Write down the work-energy balance equation in variable form. U_{now} =	Work	Work-Energy Balance
Unon = Derive the work done by the spring force in variable form. WE.Eq: Calculate the maximum spring compression. U _n = Ar = 0.44 m	Derive the work done by the non- conservative forces in <u>variable form</u> .	Write down the work-energy balance equation in <u>variable form</u> .
Derive the work done by the spring force in variable form. WE.Eq:Calculate the maximum spring compression.	$U_{non} =$	
<i>U_s</i> =	Derive the work done by the spring force in variable form.	
U _s =		WE.Ea:
$U_s = $		Calculate the maximum spring compression
$U_s = $		
	$U_s = $	$\Delta r = 0.44 \text{m}$